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ABSTRACT: This report describes a pressure-gage calibration
device which simulates both the magnitude and the rise-time
characteristics of pressure pulses experienced in shocktubes
and shocktube wind tunnels. The advantage of a device of this
type over a static calibration device is that it provides the
ability to detect any difference in the static and dynamic
characteristics of gages. Included is also a discussion of
the response of gages to pressures with short rise times.
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INTRODTUCTION

The design and use of pressure transducers are frequently
complicated by the need to measure extremely transient pressures
accurately. In shocktube wind tunnel development, for example,
one is faced with the problem of measuring shock pressures which
rise to peak value in the time required for the passage of a
fast-moving shock front. Thus, the gages are often subjected to
pressure fluctuations that occur in a matter of microseconds.

Generally the gage designer employs a static calibrating
system in order to determine the sensitivity and calibration
curve of the transducer. This calibration is then applied in
determining the results for the case where the gage undergoes
truly dynamic loading. As will be shown in the next section,
the applicability of the static calibration to the dynamic
reading is a question of the frequency response of the transducer.
Beyond this, however, is the question of what dynamic conditions
do to the gage. Since the pressure application is to be fast,
will the gage have dynamic characteristics that are not apparent
under static conditions?

To eliminate this question many people have, in the past,
attempted to design and develop dynamic calibrating systems.
This report describes one of several systems that was developed
for use in calibrating low-pressure (0 - 100 psi) transducers.

CALCULATIONS

Most pressure transducers rely on the relative movement
of one part of the system with respect to another part; this
motion being used to develop a signal (such as strain in a
deflected diaphragm or charge on a crystal stack) which can be
measured. The magnitude of the motion is generally related to
the sensitivity while the time with which the motion takes
place is related to the frequency response. This latter quantity
should be high when the gage is used to measure rapidly varying
pressures.

A transducer system can usually be considered as a vibrating
structure which is subjected to a force application varying with
time. Generally the structure has many modes or frequencies of
vibration. For simplification, however, this complex structure
can be replaced by a simple spring-mass system having a single
vibration frequency (which in normally considered to be the
fundamental of the actual gage system) (refs. (1) and (2)).
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Several important conclusions on gage performance can be
made by analyzing the spring-mass system. If, for example, a
step function is applied to the spring mass shown in figure l(a),
the deflection at any given time is

A~ ((- )t=~ s(lCos W" 0)

This shows that the deflection under the application of a step
force function varies harmonically from 0 to 2 times the static
deflection. This oscillation occurs at the natural frequency
as shown in figure l(b).

If the force pulse applied is as shown in figure 2(a), i.e.,
the force rises linearly in time V from 0 to Fo, then the
maximum amplitude the mass has depends upon the ratio r/r,, as
shown in figure 2(b). If r- 0 the maximum amplitude is twice
the static value and for r>0 the maximum amplitude decreases
until for very large values of r the value of X max/Xst is
equal to 1. It is to be noted that if 1iT, • I the largest
amplitudes occur. This fact then provides us with a logical
definition for a dynamic load. Such a load occurs when the time
of load application is less than the natural period because
under this condition deflections in excess of 1 and up to 2 can
occur. Such a pressure application to a transducer will cause
ringing of the gage.

The gages in use at the Naval Ordnance Laboratory (ref. (3))
have a resonant frequency of 33 to 60 KC (resonant period of 30
to 17 4sec). Thus, to have a dynamic pressure pulse, the time
of application should be less than these values. Various systems
have been tried at the Naval Ordnance Laboratory in order to
provide a dynamic pressure pulse. All of these involved the use
of a large reservoir of gas which vented by means of a rupturable
diaphragm or poppet valve into a small cavity which contained
the transducer. By using a cavity, infinitesimal compared to the
large cavity, the initial pressure before valve opening represents
the final pressure that the gage feels.

None of the designs that evolved using pressure application
and quick-opening valves were successful in calibrating the NOL
gages dynamically. The best rise time that was obtained was
about 125 gsec.

If one re-examines the spring-mass system in more detail,
several conclusions can be reached which simplify the development
of a dynamic calibrator. For the system in figure l(a), the
equation of motion is
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m F(t) =F (2)

However, if we take the same system without a forcing function
but with an initial deflection Xo, then we have

mi +~Ax =o
(3)

t-o: X=Xo) X O (

For this case if we let y - Xo - X and then substitute in
equation (3) for X and X, we have

my +Ay =Ax. F.

if =.Ax.

Thus, the system described by equation (3) in terms of the y
coordinate is completely equivalent to equation (2) within an
additive constant. This means that if we apply a pressure to
a gage and then rapidly release it, the system will react exactly
as if the pressure were suddenly applied to the static gage.

DESIGN AND OPERATION OF CALIBRATOR

Figure 3 is a sketch of the calibrating block that was
designed and built. With the transducer in place, the end of
the cavity is sealed with a cellulose acetate diaphragm. The
cavity is then pressurized with oil to the desired value, air
being bled out through the capillary connection. The diaphragm
is ruptured by a needle causing the pressure to release.
Oscilloscope triggering is obtained by using the internal
triggering feature of the oscilloscope.

Oil is used as the fluid medium since it has a very low
compressibility. Thus, very small increases in volume cause
a rapid pressure decrease and the complicated wave-action
effect that is usual with a compressible fluid is minimized.

TEST RESULTS AND DISCUSSION

Figure 4 is the trace obtained with a pressure gage such
as shown in figure 5 when a pressure of 60 psi is released
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by the diaphragm. The trace shows considerable ringing indicating
the pulse was released at a time considerably less than the
natural period of the gage. Based upon the amount of overshoot
of the trace (X max/Xst i 1.7) and the natural period of the
gage (from the trace this is about 30 Isoc) the release time
for the pulse can be calculated. For the case above the release
time is about 13 gsec. Thus, the oil calibrator system does
provide a usable method of subjecting a transducer system to a
step pulse with a rise time of about 13 iýsoc.

One very interesting result was obtained with the strain-
gage type transducers. It was found that the mean pressure, as
read from the pressure traces, continued to rise to a value
about 6 percent higher than the initial value in a period of
about 200 to 300 milliseconds. A similar but somewhat smaller
result has been noted with other calibrating systems having
slower rise time. The authors believe that this effect is caused
by the beam material and bonding cement used to mount the gages
on the beam, i.e., they are viscoelastic in nature. Until further
definitive work is performed, users of calibration devices having
fairly fast-acting pressure pulses should investigate not only
the initial rise but also the long time (several seconds) pressure
value to determine if the effect mentioned is present in their
gage and calibration system.
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